Journal of

Syntheses and Cellular Investigations of 17^3 -, 15^2 -, and 13^1 -Amino Acid Derivatives of Chlorin e_6

R. G. Waruna Jinadasa, Xiaoke Hu, M. Graça H. Vicente, and Kevin M. Smith*

Louisiana State University, Department of Chemistry, Baton Rouge Louisiana 70803, United States

S Supporting Information

ABSTRACT: A series of amino acid conjugates of chlorin e_6 , containing lysine or aspartic acid residues in positions 17^3 , 15^2 , or $13¹$ of the macrocycle were synthesized and investigated as photosensitizers for photodynamic therapy of tumors. All three regioisomers were synthesized in good yields and in five steps or less from pheophytin $a(1)$. In vitro investigations using human carcinoma $HEp2$ cells show that the 15^2 -lysyl regioisomers accumulate the most within cells, and the most phototoxic are the $13¹$ regioisomers. The main determinant of biological efficacy appears to be the conjugation site, probably because of molecular conformation. Molecular modeling investigations reveal that the 17³-substituted chlorin e₆ conjugates are L-shaped, the 15² and

 $13¹$ regioisomers assume extended conformations, and the $13¹$ derivatives are nearly linear. It is hypothesized that the $13¹$ aspartylchlorin e_6 conjugate may be a more efficient photosensitizer for PDT than the commercial currently used 15^2 derivative.

INTRODUCTION

Photodynamic therapy (PDT) is a binary cancer therapy that relies on the selective uptake of a photosensitizer into cancer cells followed by irradiation with red light, which produces singlet oxygen and other reactive oxygen species.^{1-4} Highly cytotoxic singlet oxygen readily reacts with electron-rich biomolecules in its vicinity such as unsaturated lipids, amino acids, and DNA.⁵ Because of the known limited diffusion of singlet oxygen through tissues the PDT effects are largely localized to the photosensitizer-containing cells, thus reducing potential damage to normal cells in the vicinity of the tumor. The selectivity of the PDT treatment depends both on the tumor-targeting ability of the photosensitizer and the light used to activate it. An ideal photosensitizer should have minimal toxicity in the dark, a high quantum yield of triplet state formation in the presence of light, high selectivity for tumor cells over normal cells, rapid clearance from normal tissues, and a strong absorption peak within the "therapeutic window" $(600-800 \text{ nm})$ for optimal light penetration through tissue.

Commercial hematoporphyrin derivative is a porphyrin-based photosensitizer that has been commercially developed and approved in several countries for the PDT treatment of melanoma, early and advanced stage cancer of the lung, digestive tract, genitourinary tract, and Barrett's esophagus. $3-6$ However, it has only a weak absorption within the therapeutic window and often induces skin photosensitivity in patients. For these reasons, several second-generation photosensitizers bearing stronger and redshifted absorption within the therapeutic window have been investigated in PDT; these include tetra(meta-hydroxyphenyl)chlorin, (mTHPC), 2-[1-hexyloxyethyl]-2-devinyl-pyropheophorbide a

Example 19 american Chemical Society 7464 dx. Chemical Society 7464 dx. Chemical Society (HPPH), lutetium(III) texaphyrin (LuTex), mono-L-aspartylchlorin e_6 , and phthalocyanine 4 (Pc4).³⁻⁶ Chlorins (dihydroporphyrins) are particularly promising photosensitizers for PDT because of their intense absorptions above 640 nm; in particular, chlorophyll a derivatives are inherently amphiphilic macrocycles that have been extensively investigated and shown to have low dark toxicities while being able to effectively generate singlet oxygen upon light activation.^{$7-9$} Among these, HPPH and mono-L-aspartylchlorin e_6 have been investigated and are currently in advanced-stage clinical trials for oncologic PDT applications; 10^{-13} both of these chlorophyll a based compounds have shown superior PDT activity as well as rapid clearance from normal tissue and decreased patient photosensitivity compared with commercial hematoporphyrin derivative.

Chlorophyll *a* derivatives of the chlorin e_6 series possess three carboxylic side chains that can be derivatized in multiple ways to produce novel amphiphilic photosensitizers for PDT investigations. For example, their conjugation to peptides, sugars, lipoproteins, and polyamines have been reported.¹⁴⁻¹⁹ In particular, amino acid residues have been found to improve the biological effects of porphyrin-based compounds, and their nature and position about the macrocycle can have a significant impact on PDT efficacy.^{5,20,21} In the present study, we synthesized and investigated 17³, 15², and 13[†] amino acid conjugates of chlorin e₆ (Figure 1) to evaluate the effect of the nature, conjugation site, and position of the amino acid on the PDT efficacy of the conjugates in vitro, using human carcinoma HEp2 cells. The

Published: September 21, 2011 Received: April 27, 2011

Figure 1. $17³$ -, $15²$ -, and $13¹$ -regioisomers of "R"-substituted chlorin e₆.

Scheme 1^a

^a Reaction conditions: (a) TFA:H₂O 4:1, 0 °C, 1 h, 90%; (b) DCC, DMAP, H-Lys(Boc)-OMe · HCl, DIEA, CH₂CL₂, rt, 14 h, 52%; (c) NaOMe, THF, $0 °C$, 4 h, 89%; (d) TFA, CH₂Cl₂, thioanisole, 0 °C to rt, 12 h, 72%; (e) 5% H₂SO₄/MeOH, rt, 12 h, 96%; (f) NaOMe, THF, 0 °C, 4 h, 98%; (g) 18 equiv LiI, EtOH, reflux, 24 h, 21%; (h) 5% $H_2SO_4/MeOH$, rt, 12 h, 99%.

structure of mono-L-aspartylchlorin e_{6} bearing the aspartyl residue in position 15^2 (rather than in 17^3 as initially proposed) has recently been established.²² This study led us to design new syntheses of the $17³$ and $13¹$ aspartyl regioisomers of mono-Laspartylchlorin e_6 as well as to investigate the corresponding cationic lysine derivatives, which could potentially show stronger interactions with negatively charged biological molecules and plasma membranes and consequently enhanced PDT efficacy.² Furthermore, we investigated the introduction of a spacer group, ethylene diamine, and of metalation, via insertion of palladium- (II). The photosensitizing properties of porphyrin derivatives are known to be modulated by inner coordinated metal ions and associated axial ligands. $24\frac{1}{26}$ In particular, Pd(II) complexes have been shown to be efficient generators of singlet oxygen, and the palladium(II)-bacteriopheophorbide is currently being evaluated in clinical trials for the treatment of prostate cancer.^{27,28} The work described herein indicates that the site of amino acid conjugation, rather than the presence of $Pd(II)$ and even the nature of amino acid, is the major determinant of phototoxicity.

RESULTS AND DISCUSSION

1. Syntheses. The synthetic route to the $17³$ -lysyl conjugate of chlorin e_6 (3) is shown in Scheme 1. Pheophytin a (1) was obtained by extraction from Spirulina pacifica alga, an ideal source for chlorophyll *a* because of the complete absence of chlorophyll b. The selective hydrolysis of the phytyl ester group of pheophytin $a(1)$ using aqueous TFA produced pheophorbide a in high yield without affecting the β -keto ester of the isocyclic ring.29,30 This ring serves as a natural protecting group for the 13¹- and 15²-positions during the coupling reactions. Selective hydrolysis of the phytyl ester produced a free 17³-carboxylic acid group, which was activated with DCC/DMAP and coupled with H-lysine(OtBu) methyl ester to form the lysine(OtBu) methyl Scheme 2^a

^a Reaction conditions: (a) DCC, DMAP, CH₂Cl₂, rt, 2 h; H-Asp(Boc)₂ · HCl or H-Lys(Boc)-OMe · HCl, DIEA, CH₂Cl₂, rt, 14 h; (b) CH₂N₂, CH₂Cl₂, 30 min; (c) TFA, CH₂Cl₂, thioanisole, 0 °C to rt, 12 h (7a, 45%; 7b, 77%); (d) Pd(OAc)₂, THF, 60 °C, 3 h (8a, 98%; 8b, 99%).

Scheme 3^a

^a Reaction conditions: (a) L-Asp $(OtBu)_2 \cdot HCl$, DIEA, CH_2Cl_2 , HOBt, TBTU, DMF, rt, 14 h, 66%; (b) TFA, CH_2Cl_2 , thioanisole, 0 °C to rt, 12 h, 88%; (c) β -Ala(OtBu) · HCl, DIEA, CH₂Cl₂, HOBt, TBTU, DMF, rt, 12 h, 68%; (d) TFA, CH_2Cl_2 , thioanisole, 0 °C to rt, 12 h, 95%; (e) L- $\text{Asp}(\text{OtBu})_2 \cdot \text{HCl}$, DIEA, CH₂Cl₂, HOBt, TBTU, DMF, rt, 12 h, 87%; (f) TFA, CH_2Cl_2 , thioanisole, 0 °C to rt, 12 h, 97%.

ester pheophorbide a (2) in 52% yield.³² ¹H NMR spectroscopy demonstrated the existence of the isocyclic ring and new peaks for the lysine residue. Subsequent isocyclic ring-opening with sodium methoxide³¹ in THF produced the 17³-lysyl(Boc) chlorin e_6 TME in high yield (89%); deprotection of the amine group of the lysine side chain with TFA in $CH₂Cl₂$ followed and yielded the $17³$ -lysylchlorin e₆ (3) in 30% overall yield from pheophytin $a(1)$.

To synthesize the 15^2 and 13^1 amino acid derivatives of chlorin e_6 , pheophytin a (1) was converted into methyl pheophorbide a (4) by transesterification of the ester group using sulfuric acid in methanol, as previously reported, 31 followed by isocyclic ringopening, as shown in Scheme 1. An optimized yield of 98% of chlorin e_6 trimethyl ester was obtained when 1.1 equiv of freshly prepared sodium methoxide in THF were used in the ringopening reaction. Chlorin e_6 (5) was obtained by hydrolysis of the three methyl esters using an excess of LiI in ethyl acetate under reflux conditions for 24 h.³³ Alternative hydrolysis under basic conditions using NaOH and LiOH gave lower yields of chlorin e_6 . Under acidic conditions the $13¹$ -carboxylic acid of chlorin e_6 is deactivated,³⁴ allowing for the selective methylation of the 15^2 -and 17^3 -carboxylic acids with 5% H_2SO_4/M eOH to give chlorin e_6 dimethyl ester (6) in quantitative yield.²² Chorin e_6 (5) was used as starting material for the preparation of the 15² amino acid derivatives of chlorin e_6 (as shown in Scheme 2), whereas the chlorin (6) and methyl pheophorbide a (4) were used to prepare the 13¹ amino acid derivatives of chlorin e_6 (as shown in Schemes 3 and 4).

We have previously shown²² that the 15^2 -carboxylic acid of chlorin e_6 is the most reactive, regardless of the coupling reagent employed. Therefore, upon activation of chlorin e_6 (5) with 1 equiv of DCC/DMAP, followed by addition of protected amino acid, reaction with diazomethane³⁵ and deprotection under acidic conditions, the 15^2 -aspartyl (7a) and -lysyl (7b) derivatives of chlorin e_6 were obtained in overall 36% and 56% yields, respectively (Scheme 2). The use of excess DCC significantly reduced the yields obtained due to the formation of the 17^3 , 15^2 diamino acid conjugate as a side product.

Insertion of palladium into the chlorin ring was attempted before the deprotection step to simplify the purification process; however, low yields of the target metallochlorins were obtained. Therefore, palladium insertion was performed after deprotection, using either palladium(II) acetate or palladium(II) chloride. Quantitative yields for the metal insertion reaction were obtained using 1.2 equiv of palladium(II) acetate in THF at 40 $^{\circ}$ C to produce the corresponding $Pd(II)$ complexes (8) . As expected, significant blue-shifts in the UV-vis spectrum along with $1H$ NMR and mass spectrometry confirmed the insertion of palladium. Heavy metal atoms in the core of the tetrapyrroles have been shown to facilitate intersystem crossing and increase the production of singlet oxygen due to the inner heavy atom effect.^{36,37}

Two routes were used to synthesize the $13¹$ -amino acid conjugates: (1) Selective esterification of 17^3 - and 15^2 -carboxylic acids of chlorin e_6 to produce the monocarboxylic acid (6) followed by Scheme 4^a

^a Reaction conditions: (a) $\mathrm{NH}_2\mathrm{C}_2\mathrm{H}_4\mathrm{NH}_2$, CHCl₃, rt, 24 h, 91%; (b) (Boc)Lys(Boc)-OH, DIEA, CH₂Cl₂, HOBt, TBTU, DMF, rt, 12 h, 78%; (c) TFA, $CH₂Cl₂$, thioanisole, 0 °C to rt, 12 h, 81%.

coupling³⁴ (Scheme 3) and (2) isocyclic ring-opening of methyl pheoporbide a (4) with a nucleophile (Scheme 4). The 13^1 carboxylic acid of chlorin (6) was activated using HOBt/TBTU under basic conditions³⁸ and coupled with L-aspartic di(tert)butyl ester. With DCC/DMAP, a lower yield was obtained for the coupling reaction. Subsequent deprotection of both carboxylic acids in the aspartic chain provided (9) in 57% overall yield from chlorin e_6 (Scheme 3). Coupling of the 13¹-carboxylic acid of chlorin (6) with β -alanine tert-butyl ester followed by deprotection using TFA gave the 13^1 - β -alanylchlorin e₆ dimethyl ester (10) in 64% overall yield. Aspartic di(tert)butyl ester was then coupled under similar conditions, followed by removal of the tert-butyl protecting group to give (11) in 54% yield from (10). β -Alanine provides a 4-atom link between the aspartic acid and chlorin e_6 dimethyl ester and allows for direct comparison with the lysine derivative 13 (see Scheme 4). The use of a linker significantly increased the yield of the coupling reaction (from 66 to 87%), and it can also affect the biological properties of the photosensitizer.^{20,39}

The nucleophilic ring-opening of the isocyclic ring in pheophorbide a with ethylenediamine and ethanolamine has already been previously reported.^{25,40} We took advantage of this high yielding isocyclic ring-opening reaction to develop a potentially high yielding synthetic route to novel chlorin e_6 photosensitizers directly from pheophytin $a(1)$ in four steps. Nucleophilic ringopening of the isocyclic ring with ethylenediamine produced molecule (12) in 91% yield. Subsequent coupling with protected lysine followed by deprotection gave the desired product (13) in four steps and in 55% overall yield from pheophytin $a(1)$. No absorption quenching of the chlorin macrocycle was observed upon conjugation with the amino acid lysine in comparison with the aspartic acid derivative (see Figure S1 of the Supporting Information).

2. Molecular Modeling. Conformation analyses for 17^3 -, 15^2 -, and 13^1 -lysylchlorin e₆ derivatives 3, 7b, and 13 were performed in both the gas phase and in water at the HF/6-31G level. These calculations were based on the atom coordinates from the X-ray structure of 15^2 -aspartylchlorin e_6 tetramethyl ester.²² The minimum energy conformations found for compounds 3, 7b, and 13 in the gas phase, shown in Figure 2a $-c$, respectively, were very similar to those found in water phase (Figure S2 of the Supporting Information). In addition, the conformation of a monocationic 13^1 -lysylchlorin e₆ derivative without a linker was also investigated in the gas phase (Figure 2d). As expected, the lysine residue in the $17³$ -lysyl derivative 3 is nearly perpendicular

Figure 2. Energy minimized conformations in gas phase for chlorin e_6 derivatives (a) 3 , (b) 7b, (c) 13, and (d) $[13^1 \text{LysCe}_6 \text{TME}]^+$. Optimization by energy was carried out at HF/6-31G level.

to the macrocyclic plane (Figure 2a), while in the 15^2 -lysyl derivative 7b it forms approximately a 120° angle (Figure 2b). On the other hand, the lysine residue extends away from the macrocycle in the $13¹$ -lysyl derivatives, with and without the short spacer (Figures 2c,d). Consequently, in the L-shape conformation of the $17³$ -lysylchlorin e_6 derivative, the amino acid shelters one face of the chlorin ring, while in the case of the 15²- and 13¹-lysyl derivatives, it extends away from the macrocycle, resulting in a nearly linear conformation for the $13¹$ derivatives. The use of a short linker and the presence of two (rather than one) positive charges, as a result from conjugation to the C-terminus rather than the N-terminus of the amino acid, do not appear to have a significant effect upon the preferred conformation; the main determinant of molecule conformation is the site of substitution. While the minimum energy conformations found in water were similar to those in the gas phase, it is possible that in water intermolecular forces (such as $\pi-\pi$ stacking) predominate over the intramolecular interactions, in particular for the linear 13^1 -lysylchlorin e₆ derivatives.

3. Cell Culture Studies. 3.1. Time-Dependent Cellular Uptake. The results obtained for the time-dependent uptake of chlorin e_6 and its derivatives at a concentration of 10 μ M in human HEp2

Figure 3. Time-dependent uptake of chlorin e_6 (5, black line) and its derivatives 17³-LysChlorin e₆TME (3, brown line), 15²-AspChlorin e_6 DME (7a, light-blue line), 15^2 -LysChlorin e_6 TME (7b, red line), 15^2 -AspPdChlorin e_6 DME (8a, green line), 15²-LysPdChlorin e_6 TME (8b, blue line), 13¹-AspChlorin e₆DME (9, maroon line), 13¹-βAlaAsp-Chlorin e_6 DME (11, purple line), and 13¹-EDLysChlorin e_6 DME (13, pink line) at 10 μ M by HEp2 cells.

Figure 4. Dark toxicity of chlorin e_6 (5, black line) and its derivatives $17³$ -LysChlorin e₆TME (3, brown line), $15²$ -AspChlorin e₆DME (7a, light blue line), 15^2 -LysChlorin e₆TME (7**b**, red line), 15^2 -AspPdChlorin e₆DME (8a, green line), 15^2 -LysPdChlorin e₆TME (8b, blue line), 13¹-AspChlorin e₆DME (9, maroon line), 13¹-βAlaAspChlorin e₆DME (11, purple line), and 13^1 -EDLysChlorin e₆DME (13, pink line) toward HEp2 cells using 1 J/cm² light dose and the Cell Titer Blue assay.

cells are shown in Figure 3 (also see Figure S3 of the Supporting Information). All amino acid conjugates of chlorin e_6 were readily taken up by cells and showed uptake kinetics similar to those of unconjugated chlorin e₆. Interestingly, the 15²-lysylchlorin e_6 derivatives 7b and its palladium(II) complex 8b accumulated to a much higher extent than all other compounds at all time points studied. In comparison with chlorin e_6 , the lysyl derivatives 7b and 8b showed 18-fold and 4-fold higher cellular uptake, respectively, after 24 h. The observed high uptake for derivatives 7b and 8b is probably due to the lysine residue in position $15²$ because the corresponding aspartyl derivatives 7a and 8a accumulated to a significantly lower extent within cells. Presumably, the stronger interactions between the positively charged lysine derivatives (compared with the corresponding aspartyl derivatives) with the negatively charged plasma membrane leads to enhanced cellular uptake.^{20,23} On the other hand, a lysine residue in position 17^3 , as in derivative 3, showed a dramatic decrease in cellular uptake compared with the same residue at position 15², suggesting that the molecule conformation plays an important role on the mechanism of cellular uptake. Indeed the

Figure 5. Phototoxicity of chlorin e_6 (5, black line) and its derivatives $17³$ -LysChlorin e₆TME (3, brown line), $15²$ -AspChlorin e₆DME (7a, light-blue line), 15^2 -LysChlorin e₆TME (7**b**, red line), 15^2 -AspPdChlorin e₆DME (8a, green line), 15^2 -LysPdChlorin e₆TME (8b, blue line), 13¹-AspChlorin e₆DME (9, maroon line), 13¹- β AlaAspChlorin e₆DME (11, purple line), and 13^1 -EDLysChlorin e₆DME (13, pink line) toward HEp2 cells using 1 J/cm² light dose and the Cell Titer Blue assay.

Table 1. Cytotoxicity (HEp2 cells) for Chlorin e_6 and Its Derivatives Using the Cell Titer Blue Assay

compd	dark toxicity $(IC_{50}, \mu M)$	phototoxicity $(IC_{50}, \mu M)$	ratio
chlorin $e_6(5)$ 173 -LysChlorin e ₆ TME (3) 15^2 -AspChlorin e ₆ DME (7a) 15 ² -LysChlorin e ₆ TME (7 b) 15^2 -AspPdChlorin e ₆ DME (8a) 15^2 -LysPdChlorin e ₆ TME (8b) 13 ¹ -AspChlorin e ₆ DME (9) 13^1 - β AlaAspChlorin e ₆ DME (11)	>400 >400 373.1 >400 324.8 >400 284.6 383.9	20.8 26.2 4.0 28.8 16.7 3.3 0.61 0.82	>19.2 >15.3 93.4 >13.9 19.4 >121.2 466.6 468.2
13 ¹ -EDLysChlorin e ₆ DME (13)	268.4	1.34	200.3

extended conformation of the 15^2 -lysylchlorin e₆ derivative 7b (Figure 2b) might be the most favored for penetration across the plasma membrane, compared with the L-shape and linear conformations of the $17³$ - and $13¹$ -lysyl derivatives (Figures 2a,c), respectively. The presence of a chelated palladium ion, as well as the more linear structure of the 13^1 -lysyl substituent might lead to enhanced $\pi-\pi$ stacking of the macrocycles, thereby decreasing cellular uptake.

3.2. Cytotoxicity. The dark cytotoxicity and phototoxicity of chlorin e_6 and its derivatives was evaluated in HEp2 cells exposed to increasing concentrations of each compound up to 400 μ M; the results are shown in Figures 4 and 5, respectively, and are summarized in Table 1. Chlorin e_6 and its lysyl derivatives 3, 7b, and 8b were found to be nontoxic in the dark up to the highest concentration (400 μ M) investigated. All other amino acid derivatives showed very low dark cytotoxicities, with IC_{50} > 320 μ M except for the 13¹-chlorin e₆ derivatives 9 and 13, which showed IC₅₀ of 285 and 268 μ M, respectively. However, upon exposure to a low light dose $(1 J/cm^2)$, all chlorin e₆ derivatives were found to be highly toxic to HEp2 cells (Figure 3). The most phototoxic were the 13^1 -chlorin e₆ derivatives 9, 11, and 13, with estimated IC₅₀ values of 0.61, 0.82, and 1.34 μ M, respectively. Among these, the most promising aspartyl derivatives for PDT applications are compounds 9 and 11 because they have the highest dark cytotoxicity/phototoxicity ratio > 466:1. The

Table 2. Major (++) and Minor (+) Subcellular Sites of Localization for Chlorin e_6 and Its Derivatives in HEp2 Cells

compd				lysosomes ER Golgi mitochondria
chlorin $e_6(5)$	$^{+}$	$^{++}$		
173 -LysChlorin e ₆ TME (3)	$^{+}$	$^{++}$	$\ddot{}$	
15 ² -AspChlorin e ₆ DME (7a)	$^{++}$	$^{++}$		$^{+}$
15^2 -LysChlorin e ₆ TME (7b)	$^{++}$	$^{++}$	$^{+}$	
15 ² -AspPdChlorin e ₆ DME (8a)	$^{++}$	$^{+}$	$^{++}$	
15 ² -LysPdChlorin e ₆ TME (8b)	$^{+}$	$^{++}$		
13 ¹ -AspChlorin e ₆ DME (9)	$^{+}$	$^{++}$	$^{++}$	$^{++}$
13^1 - β AlaAspChlorin e ₆ DME (11)	$^{++}$	$^{++}$	$^{++}$	
13^1 -EDLysChlorin e ₆ DME (13)	$^{++}$	$^{++}$	$^{++}$	

presence of the β-alanine spacer between the $13¹$ carbonyl group and the aspartic acid residue seems to have only a small effect, slightly decreasing compound cytotoxicity. On the other hand, the 15^2 -aspartylchlorin e₆ derivative 7a was less phototoxic than its $13¹$ regioisomer 9 by approximately 7-fold, and the introduction of palladium(II) further reduced its phototoxicity. The positively charged 17^3 - and 15^2 -lysylchlorin e_6 derivatives 3 and 7b were the least phototoxic, and the introduction of palladium increased the phototoxicity of the $15²$ derivative by about 10-fold. These results show for the first time that the phototoxicity of amphiphilic conjugates of chlorin e_6 depends mainly on the site of conjugation, probably as a result of its effect on molecular conformation; the nature of the amino acid, the molecule overall charge, and the presence of palladium(II) also affect phototoxicity, but apparently to a smaller extent. Our results suggest that the most extended, nearly linear conformation of the $13¹$ regioisomers probably facilitates binding to specific biological substrates, enhancing their toxic effect.

3.3. Intracellular Localization. The preferential sites of subcellular localization of this series of chlorin e_6 derivatives were evaluated by fluorescence microscopy upon exposure of HEp2 cells to 10 μ M compound concentrations for 18 h. Figure S4 of the Supporting Information shows the fluorescence pattern observed for all compounds, and Table 2 summarizes their main sites of subcellular localization. Overlay experiments using the organelle specific fluorescence probes BODIPY Ceramide (Golgi), LysoSensor Green (lysosomes), MitoTracker Green (mitochondria), and ER Tracker Blue/White (ER) were conducted to evaluate the preferential sites of compound localization, as seen in Figures 6, 7, and 8 for the most phototoxic $13¹$ regioisomers, respectively, and Figures S5-S10 of the Supporting Information. All chlorin e_6 derivatives 3, 7a, 7b, 8a, 8b, 9, 11, and 13 were found to localize in the lysosomes and the ER (Table 2). This is not surprising because the structurally related 15^2 -aspartylchlorin ${\bf e}_6$ is a known lysosomal localizer, and HPPH (2-[1-hexyloxyethyl]-2-devinyl-pyropheophorbide a) localizes preferentially in the ER.⁴¹ Photodamage to the ER and/or lysosomes has been shown to lead to activation of apoptotic pathways.⁴¹⁻⁴³ Furthermore, all the 13¹-chlorin e_6 regioisomers 9, 11, and 13 were also found in Golgi, and in addition the most phototoxic derivative 9 also localized in mitochondria; presumably, the photodamage effect to multiple organelles caused by the $13¹$ derivatives can trigger various apoptotic pathways, leading to more effective cell destruction. The multi- $\mathbf{\hat{p}}$ le sites of intracellular localization observed for the 13 1 -chlorin e_6 derivatives might again be due to their linear conformations that facilitate their binding to various intracellular sites.

Figure 6. Subcellular localization of conjugate 13^1 AspCe₆DME (9) in HEp2 cells at 10 μ M for 18 h (a) phase contrast, (b) overlay of conjugate 9 compound and phase contrast, (c) ER Tracker Blue/White fluorescence, (e) MitoTracker Green fluorescence, (g) BoDIPY Ceramide, (i) LysoSensor Green fluorescence, and (d,f,h,j) overlays of organelle tracers with compound fluorescence. Scale bar: $10 \mu m$.

CONCLUSIONS

A series of eight chlorin e_6 derivatives, conjugated with either aspartic acid or lysine residues at positions 17^3 , 15^2 , or 13^1 of the chlorin macrocycle, have been synthesized in good yields from pheophytin $a(1)$. In comparison with chlorin $e_6(5)$, all amino acid derivatives readily accumulated within human HEp2 cells, and in particular the 15^2 -lysyl derivatives were taken up by cells to a significantly higher extent than were all other regioisomers. On the other hand, the metal-free 15^2 -lysylchlorin e_6 derivative (7b) showed the *least* phototoxicity, followed by the 17³-lysyl regioisomer (3); insertion of palladium into 15^2 -lysychlorin e_6 (7b) increased phototoxicity by approximately 9-fold. However, the most phototoxic compounds were found to be the $13¹$ -regioisomers, bearing

Figure 7. Subcellular localization of conjugate $13^1 \beta$ -Ala-AspCe₆DME (11) in HEp-2 cells at 10 μ M for 18 h (a) phase contrast, (b) overlay of conjugate 11 and phase contrast, (c) ER Tracker Blue/White fluorescence (e) MitoTracker Green fluorescence, (g) BoDIPY Ceramide, (i) LysoSensor Green fluorescence, and (d,f,h,j) overlays of organelle tracers with compound fluorescence. Scale bar: $10 \mu m$.

either an aspartic acid or a lysine residue directly conjugated to position-13 of the chlorin macrocycle or connected via a β -alanine or ethylene diamine spacer. The most phototoxic compound of this series, and the most promising for PDT applications, is 13¹aspartylchlorin e_6 (9). Molecular modeling calculations show that the 131 -regioisomers assume extended, nearly linear conformations that might facilitate their binding to multiple intracellular components and subsequent photodamage to multiple cellular sites. Therefore, the site of amino acid conjugation at the chlorin e_6 macrocycle is a major determinant of compound phototoxicity, and we hypothesize that the 13¹-regioisomer of mono-L-aspartylchlorin e_6 (9) might be a more efficient photosensitizer for PDT than is the commercial regioisomer (15²-mono-L-aspartylchlorin e_6).

Figure 8. Subcellular localization of conjugate 13^1 ED-LysCe₆DME (13) in HEp-2 cells at 10 μ M for 18 h (a) phase contrast, (b) overlay of conjugate 11 and phase contrast, (c) ER Tracker Blue/White fluorescence (e) MitoTracker Green fluorescence, (g) BoDIPY Ceramide, (i) LysoSensor Green fluorescence, and (d,f,h,j) overlays of organelle tracers with compound fluorescence. Scale bar: $10 \mu m$.

EXPERIMENTAL SECTION

1. Chemistry. All air and moisture sensitive reactions were performed in dried and distilled solvents under an argon atmosphere. All solvents and reagents were purchased from commercial sources, unless otherwise stated. Silica gel 60 (230 \times 400 mesh, Sorbent Technologies) was used for column chromatography. Analytical thin-layer chromatography (TLC) was carried out using polyester backed TLC plates 254 (precoated, 200 μ m) from Sorbent Technologies. NMR spectra were recorded on an AV-400 spectrometer (400 MHz for ¹H, 100 MHz for ¹³C). The chemical shifts are reported in δ ppm using the following partially deuterated solvents as internal references: CD_2Cl_2 5.32 ppm - $(1H)$, 54 ppm $(13C)$; DMSO-d 2.49 ppm $(1H)$, 39.5 ppm $(13C)$; CH₃OH-d 4.78 ppm (¹H), 49.0 ppm (¹³C); CDCl₃ 7.26 ppm (¹H),

77.16 ppm (^{13}C) ; $(CH_3)_2CO$ 2.50 ppm (^{1}H) , 29.84 ppm (^{13}C) . Electronic absorption spectra were measured on an Agilent 8453 UV/ vis spectrophotometer. Mass spectra were obtained on a Bruker Omniflex MALDI time-of-flight mass spectrometer. Spirulina pacifica alga was purchased as a spray-dried powder from Cyanotech, Hawaii. Pheophytin $a(1)$ was extracted from Spirulina pacifica alga as previously published, and its spectroscopic characterization agreed with the published data.²⁹ All compounds synthesized were purified and isolated in \geq 95% purity, as evidenced by analytical TLC in at least two solvent systems and confirmed by the absence of extraneous tetrapyrrole resonances in ${}^{1}H$ and $13C$ NMR spectra. Energy minimization of all compounds was performed in the framework of Hartree-Fock. The restricted Hartree-Fock functional was used at the 6-31G level. All structures were optimized without any symmetry constrains. The solvent effects were accounted for using the Polarizable Continuum Model (PCM). All calculations were performed using the Gaussian 09 program package.

17³ Lysyl(Boc)OMe-pheophorbide a (2). Pheophytin a (1) (250 mg, 0.29 mmol) was selectively hydrolyzed to the 17³ carboxylic acid without affecting the $13¹$ carbomethoxy group, as previously reported.³¹ After evaporation of solvent, 155 mg (0.26 mmol), 90% of pheophorbide a $(C_{35}H_{36}N_4O_5)$ was obtained. The spectroscopic data obtained for the compound agreed with published data. Pheophorbide a (100 mg; 0.169 mmol) was dissolved in 10 mL of CH₂Cl₂. Then DCC (42 mg) and $DMAP$ (10 mg) were added and left for 15 min. H-Lys(Boc)OMe \cdot HCl (60 mg) and DIEA (0.035 mL) were dissolved in 5 mL of CH_2Cl_2 , added to the reaction mixture, and stirred for 4 h. [Note: this reaction is favored by dilute conditions; concentrated conditions favor the formation of the anhydride (bispheophorbide) and will slow the reaction]. The reaction mixture was washed with 10% citric acid, water, and brine, dried over anhydrous $Na₂SO₄$, and purified on a silica gel column (10%) acetone in CH_2Cl_2). After the major brown band was eluted from the column, the solvent was evaporated and the solid was dissolved in ethyl acetate and filtered (DCC precipitated in ethyl acetate.) Evaporation of the filtered ethyl acetate gave 74 mg, 0.089 mmol, 52% yield of lysyl- (Boc)OMe-pheophorbide a $(C_{47}H_{58}N_6O_8)$. ¹H NMR $[(CD_3)_2CO, 400]$ MHz]: δ 9.12 (s, 1H), 8.71 (s, 1H), 8.70 (s, 1H), 7.64 (dd, J = 17.8, 11.63 Hz, 1H), 7.20 (d, J = 7.2 Hz, 1H), 6.33 (s, 1H), 6.02 (d, J = 17.85 Hz, 1H), 5.93 (d, J = 11.61 Hz, 1H), 5.77 (s, 1H), 4.65 (m, 1H), 4.41 (m, 1H), 4.21 $(m, 1H)$, 3.91 (s, 3H), 3.59 (s, 3H), 3.47 (s, 3H), 3.19 (s, 3H) 3.09 (q, J = 7.5 Hz, 2H), 2.92 (3H, s), 2.83 (m, 2H), 2.66 (m, 1H), 2.48 (m, 1H), 2.25 $(m, 1H)$, 1.85 – 1.62 (br, 4H), 1.86 (d, J = 7.24, 3H), 1.37 (t, J = 7.58, 3H), 1.43 (m, 2H), 1.26 (s, 9H), -1.95 (s, 1H), -2.23 (s, 1H).

17³ Lysyl-chlorin e_6 TME (**3**). Compound 2 (74 mg, 0.089 mmol) was dissolved in dry 2:1 THF/MeOH (10 mL) and stirred under argon for 10 min. Sodium methoxide (0.17 mL of a 0.5 M solution) was added, and the reaction was allowed to stir at 0 $^{\circ}$ C for 1 h. The reaction was followed using spectrophotometry. The solution turned from brown to green as the isocyclic ring opens. The reaction mixture was then poured into water. The mixture was extracted with CH_2Cl_2 , and the organic layer was washed with water and 5% citric acid, dried over anhydrous $Na₂SO₄$, and then evaporated. The residue was dissolved in 2% MeOH/ $CH₂Cl₂$ and purified on a silica gel plug with the same mobile phase. The solvent was evaporated, and 68 mg (0.078 mmol), 89% yield, of 17^3 lysyl(Boc)chlorin e₆ TME $(C_{48}H_{62}N_6O_9)$ was obtained. ¹H NMR $[(CD₃)₂CO, 400 MHz]: \delta$ 9.80 (s, 1H), 9.65 (s, 1H), 9.03 (s, 1H), 8.19 (dd, J = 17.87, 11.58 Hz, 1H), 7.44 (d, J = 7.6 Hz, 1H), 6.40 (d, J = 17.87, 1.33 Hz, 1H), 6.13 (d, J = 11.61, 1.36 Hz, 1H), 5.89 (s, 1H), 5.38 $(m, 2H)$, 4.63 $(q, J = 7.22 \text{ Hz}, 1H)$, 4.55 $(dd, J = 10.34, 1.95 \text{ Hz}, 1H)$, 4.44 (m, 1H), 4.25 (s, 3H), 3.78 (q, J =7.67, 2H) 3.75 (s, 3H), 3.69 (s, 3H), 3.56 (s, 3H) 3.49 (s, 3H), 3.27 (3H, s), 3.00 (m, 2H), 2.66 (m, 1H), 2.33 (m, 1H), 2.20 (m, 1H), 1.85 – 1.62 (br, 4H), 1.78 (d, J = 7.24, 3H), 1.69 (t, J = 7.58, 3H), 1.43 (m, 2H), 1.32 (s, 9H), -1.32 (s, 1H), -1.52 (s, 1H). Lysyl(Boc)chlorin e_6 TME (68 mg, 0.078 mmol) was dissolved in $2\,\rm{mL}$ of dry $\rm{CH_2Cl_2}$ in an ice bath under argon. Thioanisole $(0.057\,\rm{mmol})$

and 1 mL of TFA were added, and the reaction mixture was allowed to stir overnight. The reaction mixture was evaporated several times with diethyl ether to remove TFA. The resulting precipitate was washed several times with diethyl ether to remove thioanisole. The precipitate was dissolved in CH_2Cl_2 and washed three times with H_2O and once with 10% NaHCO₃ to remove last traces of TFA. The organic layer was dried over anhydrous Na₂SO₄. Solvent was evaporated, and 43 mg (0.056 mmol), 72% yield, of 17³-lysylchlorin e₆ TME $(C_{43}H_{54}N_6O_7)$ was obtained. UV—vis (acetone): $\lambda_{\text{max}} (\varepsilon/\text{M}^{-1}\text{cm}^{-1})$ 664 (65000), 608 $(4871), 528 (4461), 500 (16100), 400 (213000).$ ¹H NMR $[({\rm CD}_{3})_{2}{\rm CO}_{7}]$ 400 MHz]: δ 9.79 (s, 1H), 9.63 (s, 1H), 9.03 (s, 1H), 8.17 (dd, J = 17.87, 11.58 Hz, 1H), 7.59 (d, J = 7.6 Hz, 1H), 6.38 (d, J = 17.87, 1.33 Hz, 1H), 6.12 (d, J = 11.61, 1.36 Hz, 1H), 5.37 (m, 2H), 4.63 (q, J = 7.22 Hz, 1H), 4.55 (dd, $J = 10.34$, 1.95 Hz, 1H), 4.44 (m, 1H), 4.25 (s, 3H), 3.76 (m, 2H) 3.75 (s, 3H), 3.69 (s, 3H), 3.55 (s, 3H) 3.48 (s, 3H), 3.25 (3H, s), 3.09 (m, 2H), 2.67 (m, 1H), 2.30 (m, 1H), 2.20 (m, 1H), 1.85 - 1.62 (br, 3H), 1.78 (d, J = 7.24, 3H), 1.68 (t, J = 7.58, 3H), 1.51 (m, 2H), 1.39 (m, 2H), -1.33 (s, 1H), -1.53 (s, 1H). HRMS (MALDI-TOF) m/z 767.442 $[M + H]^{+}$, calcd for $C_{43}H_{55}N_6O_7$ 767.413.

Chlorin e_6 (5). Chlorin e_6 TME was prepared as previously published, and its spectroscopic characterization agreed fully with the published data.²² Chlorin e₆ TME (50 mg, 0.078 mmol) was dissolved in anhydrous ethyl acetate (10 mL) under argon. Lithium iodide (124 mg, 0.94 mmol) was added. The reaction mixture was refluxed for 48 h under argon. The reaction mixture was diluted with water and adjusted to pH 3 with aqueous citric acid and then washed with CH_2Cl_2 . The solution was evaporated, redissolved in acetone, and evaporated several times. The solid was washed with water and then dried under vacuum. The residue was dissolved in methanol and purified on a Sephadex LH-20 column to yield 10 mg, 0.017 mmol, 21% yield of chlorin e_6 (C₃₄H₃₆N₄O₆). UV-vis (MeOH): $\lambda_{\text{max}} (\varepsilon/M^{-1} \text{cm}^{-1})$ 666 (45271), 610 (8706), 558 (7835), 530 (9721), 502 (15525), 402 (145100). MS MALDI: m/z 597 $(M + H)^{+}$. ¹H NMR $[(CD₃)₂CO, 400 MHz]: \delta$ 9.73 (s, 1H), 9.51 (s, 1H), $9.04(s, 1H)$, $8.05 (dd, J = 17.86, 11.61 Hz, 1H)$, $6.28 (dd, J = 17.85,$ 1.26 Hz, 1H), 6.02 (dd, $J = 11.57$, 1.37 Hz, 1H), 5.60 (d, $J = 18.94$ Hz, 1H), 5.40 (d, J = 18.94 Hz, 1H), 4.65 (m, 1H), 4.55 (m, 1H), 3.64 (m, 2H), 3.63 (s, 3H), 3.42 (s, 3H), 3.15 (s, 3H), 2.72 (m, 1H), 2.35 (m, 1H), 2.26 (m, 1H), 2.06 (m, 1H), 1.75 (d, J = 7.5 Hz, 3H), 1.64 (t, J = 7.5 \rm{Hz} , 3H), -1.6 (s, 2H)

Chlorin e_6 DME (6). Chlorin e_6 DME was prepared as previously published, and its spectroscopic characterization agreed with the published data.²²

15² Aspartylchlorin e₆ DME (**7a**). Chlorin e₆ (100 mg, 0.168 mmol) was dissolved in dry CH_2Cl_2 . DCC (35 mg) and DMAP (9 mg) were added and allowed to stir until completely dissolved. After 3 h, H-Asp- $(0tBu)₂ \cdot HCl (47.2 mg)$ and DIEA (0.029 mL) were mixed in $CH₂Cl₂$ and added to the reaction mixture. The reaction was allowed to stir overnight. The mixture was diluted with CH_2Cl_2 and then washed with 5% aqueous citric acid, followed by washing with brine and water. It was dried over anhydrous $Na₂SO₄$ and then evaporated. The residue was dissolved in $CH₂Cl₂$ and treated with ethereal diazomethane. The residue was dissolved in 2% MeOH/CH₂Cl₂ and purified via silica gel column chromatography using the same mobile phase to afford 65 mg, 0.076 mmol, 45% yield of 15^2 -monoaspartylchlorin e_6 di(tert)butyl dimethyl ester ($C_{48}H_{61}N_5O_9$). MS (MALDI) m/z 853 (M + H)⁺. ¹H NMR $[({CD}_3)_2$ CO, 400 MHz]: δ 9.64 (s, 1H), 9.32 (s, 1H), 9.02 $(s, 1H)$, 7.81 (dd, J = 11.58, 17.85 Hz, 1H), 7.00 (s, 1H), 6.09 (dd, J = 17.87, 1.26 Hz, 1H), 5.85 (dd, J = 11.60, 1.29 Hz, 1H), 5.38 (s, 2H), 4.6 $(br, 3H)$, 4.32 (s, 3H), 3.62 (s, 3H), 3.54 (s, 3H), 3.52 (q, J = 7.3 Hz, 2H), 3.30 (s, 3H), 3.02 (s, 3H), 2.78 (m, 3H), 2.44 (m, 2H), 1.87 (m, 1H), 1.65 (d, J = 7.3 Hz, 3H), 1.58 (t, J = 7.7 Hz, 3H), 1.26 (s, 9H), 1.16 (s, 9H), -1.42 (s, 1H), -1.53 (s, 1H). The 15^2 -Aspartylchlorin e₆ di(tert)butyl dimethyl ester (65 mg, 0.076 mmol) was dissolved in 2 mL of dry CH_2Cl_2 in an ice bath under argon. Thioanisole (0.006 mL) and 2 mL of TFA were added, and the reaction mixture was allowed to stir overnight. The reaction mixture was evaporated several times with diethyl ether to remove TFA. The resulting precipitate was washed several times with diethyl ether to remove thioanisole and then dissolved in CH_2Cl_2 and washed three times with H_2O and once with 10% $NaHCO₃$ to remove TFA. The organic layer was washed with citric acid until all precipitate redissolved in the organic layer. The organic layer was dried over anhydrous Na₂SO₄. Solvent was evaporated, and 44 mg, 0.06 mmol, 79% yield of 15^2 -aspartylchlorin e₆ DME was obtained (C₄₀H₄₅N₅O₉). UV-vis (acetone) λ_{max} (ε/M^{-1} cm⁻¹) 664 (48400), 609 (6000), 560 (2000), 529 (6280), 500 (14160), 402 (151800). MS (MALDI) m/z 841 (M + H)⁺. ¹H NMR [(CD₃)₂CO, 400 MHz]: δ 9.76 (s, 1H), 9.58 (s, 1H), 9.04 (s, 1H), 8.10 (dd, J = 17.85, 11.59 Hz, 1H), 6.33 (dd, J = 17.87, 0.98 Hz, 1H), 6.07 (dd, J = 11.61, 1.09 Hz, 1H), 5.32 (m, 2H), 4.84 (m, 1H), 4.60 (m, 2H), 4.26 (s, 3H), 3.72 (q, J = 7.3 Hz, 2H), 3.57 (s, 3H), 3.54 (s, 3H), 3.45 (s, 3H), 3.21 (m, $3H$), 2.95 (dd, J = 16.85, 5.53 Hz, 1H), 2.88 (dd, J = 16.85, 5.09 Hz, 1H) 2.68 (m, 1H) 2.32 (m, 2H), 1.78 (m, 1H), 1.74 (d, $J = 7.3$ Hz, 3H), 1.66 $(t, J = 7.7 \text{ Hz}, 3\text{H}), -1.39 \text{ (s, 1H)}, -1.58 \text{ (s, 1H)}.$ HRMS (MALDI-TOF) m/z 740.376 [M + H]⁺, calcd for C₄₀H₄₆N₅O₉ 740.330

15² Lysylchlorin e₆ TME (**7b**). Chlorin e₆ (75 mg, 0.12 mmol) was dissolved in dry CH_2Cl_2 (10 mL). DCC (31.3 mg) and DMAP (11 mg) were added and allowed to stir until completely dissolved. After 3 h, H-lysyl(Boc)OMe · HCl (45 mg) and DIEA (0.022 mL) were mixed in $CH₂Cl₂$ and added to the reaction mixture. The reaction was allowed to stir overnight. It was then diluted with CH_2Cl_2 and washed with 5% aqueous citric acid, followed by a wash with brine and water. It was dried over anhydrous $Na₂SO₄$ and then evaporated to dryness. The residue was dissolved in $CH₂Cl₂$ and treated with excess ethereal diazomethane. The residue was dissolved in 12% acetone/ CH_2Cl_2 and purified via silica gel column chromatography with the same mobile phase to afford 84 mg, 0.097 mmol, 77% yield of 15^2 -lysyl (Boc) chlorin e₆ TME $(C_{48}$ - $H_{62}N_6O_9$). MS (MALDI) m/z 868 (M + H)⁺. ¹H NMR [(CD₃)₂CO, 400 MHz]: δ 9.77 (s, 1H), 9.55 (s, 1H), 9.04 (s, 1H), 8.08 (dd, J = 17.87, 11.58 Hz, 1H), 7.07 (m, 1H), 6.31 (dd, J = 17.87, 1.33 Hz, 1H), 6.06 (dd, $J = 11.61, 1.36$ Hz, 1H), 5.87 (s, 1H), 5.32 (s, 2H), 4.65 (q, $J = 7.22$ Hz, 1H), 4.60 (dd, J = 10.34, 1.95 Hz, 1H), 4.49 (m, 1H), 4.26 (s, 3H), 3.71 $(q, J = 7.67, 2H)$ 3.57 (s, 3H), 3.54 (s, 3H), 3.47 (s, 3H) 3.44 (s, 3H), 3.19 (3H, s), 2.97 (m, 2H), 2.71 (m, 1H), 2.37 (m, 2H), 1.80 (m, 3H), 1.77 (d, J = 7.24, 3H), 1.66 (t, J = 7.58, 3H), 1.39 (s, 9H), 1.27 (m, 2H), -1.35 (s, 1H), -1.56 (s, 1H). The 15^2 lysyl(Boc)chlorin e₆ TME (84 $\,$ mg 0.097 mmol) was dissolved in 3 mL of dry CH_2Cl_2 in an ice bath under argon. Thioanisole (0.01 mL) and 1 mL of TFA were added, and the reaction mixture was allowed to stir overnight. The reaction mixture was evaporated several times with diethyl ether to remove residual TFA. The resulting precipitate was washed several times with diethyl ether to remove thioanisole. Then the precipitate was dissolved in $CH₂Cl₂$ and washed three times with $H₂O$ and once with 10% $NaHCO₃$ to remove TFA. The organic layer was washed with citric acid until the precipitate was redissolved in the organic layer. The organic layer was dried over anhydrous $Na₂SO₄$ and then was evaporated to give 56 mg, 0.071 mmol, 73% yield of 15²-lysylchlorin e_6 TME (C₄₃H₅₄N₆O₇). UV-vis (acetone) λ_{max} (ε/M^{-1} cm⁻¹) 664 (57800), 608 (4600), 529 (4900), 500 (14800), 400 (187200). ¹H NMR $[(CD_3)_2CO, 400 MHz]$: δ 9.68 (s, 1H), 9.42 (s, 1H), 9.02 $(s, 1H)$, 7.95 (dd, J = 17.87, 11.58 Hz, 1H), 7.12 (d, J = 6.8 Hz, 1H), 6.20 (dd, $J = 17.87, 1.33$ Hz, 1H), 5.95 (dd, $J = 11.61, 1.36$ Hz, 1H), 5.35 (s, 2H), 4.65 (q, $J = 7.22$ Hz, 1H), 4.61 (dd, $J = 10.34$, 1.95 Hz, 1H), 4.53 (m, 1H), 4.27 (s, 3H), 3.59 (m, 2H) 3.55 (s, 6H), 3.48 (s, 3H) 3.37 (s, 3H), 3.09 (3H, s), 2.99 (m, 3H), 2.73 (m, 1H), 2.38 $(m, 2H)$, 1.80 $(m, 3H)$, 1.78 $(d, J = 7.24, 3H)$, 1.61 $(t, J = 7.58, 3H)$, 1.43 (m, 2H), -1.40 (s, 1H), -1.57 (s, 1H). HRMS (MALDI-TOF) m/z 767.399 $[M + H]^+$, calcd for $C_{43}H_{55}N_6O_7$ 767.413

Palladium(II) 15²-Aspartylchlorin e_6 DME (8a). 15²-Aspartylchlorin e_6 DME (44 mg, 0.06 mmol) was dissolved in 2 mL of dry THF. Palladium(II) acetate (14.2 mg, 0.063 mmol) was dissolved in THF and added to the reaction vessel and allowed to stir at 40 $^{\circ}$ C for 3 h. The reaction was followed by spectrophotometry. The solution turned from green to bluish-green as the complex formed. After evaporation of solvent, the residue was dissolved in methanol and purified via Sephadex LH-20 chromatography using the same mobile phase to afford 50 mg, 0.059 mmol, 98% yield of palladium 15^2 -lysylchlorin e₆ TME (C₄₀H₄₃N₅O₉Pd). UV-vis (acetone): $\lambda_{\text{max}} (\varepsilon/M^{-1} \text{cm}^{-1})$ 619 (31240), 579 (6210), 489 (4035), 393 (44160). MS (MALDI) m/z 845 $(M + H)^{+}$. ¹H NMR $[(CD₃)₂CO, 400 MHz]: \delta$ 9.53 $(s, 1H)$, 9.54 . $(s, 1H)$, 8.93 $(s, 1H)$, 8.03 $(dd, J = 17.82, 11.54 Hz, 1H$), 6.17 $(d, J =$ 17.79 Hz, 1H), 6.00 (dd, $J = 11.61$, 1H), 5.19 (d, $J = 18.77$ Hz, 1H), 5.04 (d, $J = 18.59$ Hz, 1H), 4.92 (m, 1H), 4.63 (m, 2H), 4.20 (s, 3H), 3.62 (s, 3H), 3.57 (m, 2H), 3.57 (s, 3H), 3.37 (s, 3H), 3.07 (m, 3H), 2.68 (m, 2H) 2.38 (m, 1H) 2.12 (m, 1H), 1.78 (m, 2H), 1.74 (d, J = 7.3 Hz, 3H), 1.50 (t, $J = 7.7$ Hz, 3H). HRMS (MALDI-TOF) m/z 843.109 $[M]^+$, calcd for C₄₀H₄₃N₅O₉Pd 843.210.

Palladium(II) 15²-Lysylchlorin e₆ TME (**8b**). 15²-Lysylchlorin e₆ TME (56 mg) was dissolved in 5 mL of dry THF. Palladium(II) acetate (53 mg) was dissolved in THF and added to the reaction vessel and stirred at 60 \degree C for 3 h. The reaction was followed by spectrophotometry. The solution turned from green to bluish-green as the complex formed. After evaporation of solvent, the residue was dissolved in methanol and purified via Sephadex LH-20 chromatography using the same mobile phase to afford 61 mg, 0.07 mmol, 99% yield of palladium- (II) 15^2 -lysylchlorin e₆ TME (C₄₃H₅₃N₆O₇Pd). UV-vis (acetone): λ_{max} ($\varepsilon/\text{M}^{-1}\text{cm}^{-1}$) 620 (97520), 581 (14500), 490 (7600), 394 (140900). ¹H NMR [(CD₃)₂CO, 400 MHz] all the peaks were broad due to partial paramagnetic nature of the compound. HRMS (MALDI-TOF) m/z 872.337 [M + 2H]⁺, 767.450 [M + H – Pd]⁺ calcd for $C_{43}H_{54}N_6O_7Pd 871.301, C_{43}H_{55}N_6O_7 767.413.$

13¹ Aspartylchlorin e_6 DME (**9**). Chlorin e_6 dimethyl ester (55 mg, 0.088 mmol) was dissolved in dry $\mathrm{CH}_2\mathrm{Cl}_2$. A mixture of HOBt (12 mg), TBTU (29 mg), and DIEA (0.017 mL) in DMF was added, and the mixture was allowed to stir for 30 min. H-Asp $(OtBu)_2 \cdot HCl (60 mg)$ and DIEA (0.033 mL) were mixed in CH_2Cl_2 and added to this reaction mixture. The mixture was stirred overnight. It was diluted with CH_2Cl_2 and then washed with 5% aqueous citric acid, followed by a wash with brine and water. It was dried over anhydrous $Na₂SO₄$ and then evaporated. The residue was dissolved in 5% acetone/ CH_2Cl_2 and purified via silica gel column chromatography using the same mobile phase to afford 50 mg, 0.058 mmol, 66% yield of $13^{\frac{1}{1}}$ -aspartylchlorin e₆ di(tert)butyl dimethyl ester ($C_{48}H_{61}N_5O_9$). MS (MALDI) m/z 852 $(M + H)^{+}$. ¹H NMR $[(CD₃)₂CO, 400 MHz]: \delta$ 9.79 (s, 1H), 9.70 (s, 1H), 9.10 (s, 1H), 8.39 (d, J = 7.93 Hz, 1H), 8.19 (dd, J = 11.58, 17.85 Hz, 1H), 6.37 (dd, J = 17.85, 1.23 Hz, 1H), 6.10 (dd, J = 11.87, 1.26 Hz, 1H), 5.71 (d, J = 18.95 Hz, 1H), 5.30 (m, 2H), 4.67 (q, J = 7.22 Hz, 1H), 4.49 (dd, J = 10.34, 1.95 Hz, 1H), 3.76 (q, J = 7.3 Hz, 2H), 3.74 (s, 3H), 3.64 (s, 3H), 3.61 (s, 3H), 3.50 (s, 3H), 3.27 (s, 3H), 3.16 (dd, J = 5.8, 0.78 Hz, 2H), 2.73 (m, 1H), 2.32 (m, 2H), 1.79 (m, 1H), 1.69 (m, 6H), 1.64 (s, 9H), 1.53 (s, 9H), -1.57 (s, 1H), -1.85 (s, 1H). The 13^1 Aspartylchlorin e_6 di(tert)butyl dimethyl ester (50 mg, 0.058 mmol) was dissolved in 2 mL of dry CH_2Cl_2 in a ice bath under argon. Thioanisole (0.005 mL) and 2 mL of TFA were added, and the reaction mixture was stirred overnight. The reaction mixture was evaporated several times with diethyl ether to remove residual TFA. The resulting precipitate was washed several times with diethyl ether to remove thioanisole. Then the precipitate was dissolved in CH_2Cl_2 and washed three times with H_2O and once with 10% NaHCO₃ to remove TFA. The organic layer was dried over anhydrous $Na₂SO₄$ and then evaporated to give 38 mg, 0.051 mmol, 88% yield of 13^1 -aspartylchlorin e₆ DME $(C_{40}H_{45}N_5O_9)$. UV-vis (acetone): λ_{max} ($\varepsilon/\text{M}^{-1}$ cm⁻¹) 663 (126800), 607 (9000),

528 (7450), 500 (31540), 399 (385800). ¹H NMR [(CD₃)₂CO, 400 MHz]: δ 9.79 (s, 1H), 9.70 (s, 1H), 9.12 (s, 1H), 8.50 (d, J = 7.93 Hz, 1H), 8.19 (dd, J = 11.58, 17.85 Hz, 1H), 6.37 (d, $J = 18.85$ Hz, 1H), 6.10 (d, $J = 11.87$ Hz, 1H), 5.71 (d, $J = 18.95$ Hz, 1H), 5.45 (dd, J = 13.76, 5.80 Hz, 1H), 5.30 (d, J = 18.93 Hz, 1H), $4.67 (q, J = 7.22 Hz, 1H), 4.50 (dd, J = 10.34, 1.95 Hz, 1H), 3.76 (q, J =$ 7.3 Hz, 2H), 3.71 (s, 3H), 3.63 (s, 3H), 3.60 (s, 3H), 3.51 (s, 3H), 3.31 (dd, J = 5.76, 3.47 Hz, 2H), 3.26 (s, 3H), 2.70 (m, 2H), 2.31 (m, 2H), 1.79 (m, 1H), 1.71 (d, J = 7.24, 3H), 1.67 (t, J = 7.58, 3H), -1.57 (br s, 1H), -1.87 (s, 1H). HRMS (MALDI-TOF) m/z 740.344 [M + H]⁺, , calcd for $C_{40}H_{46}N_5O_9$ 740.330

13¹ β-Alanylchlorin e₆ DME (10). Chlorin e₆ DME (55 mg, 0.088 mmol) was dissolved in dry CH_2Cl_2 . A mixture of HOBt (12 mg), TBTU (29 mg), and DIEA (0.017 mL) in DMF was added, and the mixture was stirred for 30 min. β -Alanyl $(\text{OtBu})\cdot\text{HCl}$ (18 mg) and DIEA (0.017 mL) were mixed in CH_2Cl_2 and added to the reaction mixture. The mixture was then allowed to stir for overnight before being diluted with CH_2Cl_2 and then washed with 5% aqueous citric acid, followed by a wash with brine and water. It was dried over anhydrous $\rm Na_2SO_4$ and then evaporated to dryness. The residue was dissolved in 5% acetone/ $CH₂Cl₂$ and purified via silica gel column chromatography using the same mobile phase to afford 45 mg, 0.06 mmol, 68% yield of 13^1 - β alanylchlorin e_6 (tert)butyl dimethyl ester ($C_{43}H_{53}N_5O_7$). ¹H NMR $[(CD₃)₂CO, 400 MHz]: \delta$ 9.70 (s, 1H), 9.63 (s, 1H), 9.01 (s, 1H), 8.17 $(t, J = 5.71 \text{ Hz}, 1H)$, 8.11 (dd, J = 11.58, 17.85 Hz, 1H), 6.31 (d, J = 18.85) Hz, 1H), 6.04 (d, J = 11.87 Hz, 1H), 5.65 (d, J = 18.95 Hz, 1H), 5.38 (d, $J = 19.06$ Hz, 1H), 4.66 (q, $J = 7.22$ Hz, 1H), 4.52 (dd, $J = 10.34$, 1.95 Hz, 1H), 4.02 (m, 1H), 3.09 (m, 1H), 3.77 (s, 3H), 3.68 (q, J = 7.3 Hz, 2H), 3.61 (s, 3H), 3.51 (s, 3H), 3.46 (s, 3H), 3.21 (s, 3H), 2.71 (m, 2H), 2.31 $(m, 2H)$, 1.79 $(m, 1H)$, 1.72 $(d, J = 7.24, 3H)$, 1.65 $(t, J = 7.58, 3H)$, 1.54 (s, 9H), -1.62 (s, 1H), -1.91 (s, 1H). The $13^1-\beta$ -alanylchlorin e₆ (tert)butyl dimethyl ester (45 mg, 0.059 mmol) was dissolved in 1.5 mL of dry CH_2Cl_2 in a ice bath under argon. Thioanisole (0.005 mL) and 1.5 mL of TFA were added, and the reaction mixture was stirred overnight before being diluted with CH_2Cl_2 and washed three times with $H₂O$ and once with 10% NaHCO₃. The organic layer was dried over anhydrous $Na₂SO₄$, and the solvent was evaporated to give 39 mg, 0.056 mmol, 95% yield of 13^{1} - β -alanylchlorin e₆ DME $(C_{39}H_{45}N_5O_7)$.
¹H NMP $[(CD)$, CO 400 MHz¹, Δ 9.74 (s, 1H) 9.77 (s, 1H) 9.10 (s) ¹H NMR $[(CD_3)_2CO$, 400 MHz $]: \delta$ 9.74 (s, 1H), 9.72 (s, 1H), 9.10 (s, 1H), 8.22 (dd, J = 11.58, 17.85 Hz, 1H), 8.15 (t, J = 5.71 Hz, 1H), 6.39 $(d, J = 18.85 \text{ Hz}, 1\text{H}), 6.12 (d, J = 11.87 \text{ Hz}, 1\text{H}), 5.65 (d, J = 18.95 \text{ Hz},$ 1H), 5.37 (d, J = 19.06 Hz, 1H), 4.66 (q, J = 7.22 Hz, 1H), 4.52 (dd, J = 10.34, 1.95 Hz, 1H), 4.07 (m, 1H), 3.95 (m, 1H), 3.77 (s, 3H), 3.68 $(q, J = 7.3 \text{ Hz}, 2H), 3.61 (s, 3H), 3.53 (s, 3H), 3.52 (s, 3H), 3.28 (s, 3H),$ 2.69 (m, 2H), 2.31 (m, 2H), 1.79 (m, 1H), 1.72 (d, J = 7.24, 3H), 1.65 $(t, J = 7.58, 3H), -1.62$ (s, 1H), -1.91 (s, 1H).

13['] β-Alanyl-aspartylchlorin e₆ DME (**11**). Chlorin e₆ DME (39 mg, 0.056 mmol) was dissolved in dry CH_2Cl_2 . A mixture of HOBt (8 mg), TBTU (18 mg), and DIEA (0.017 mL) in DMF was added and stirred for 30 min. H-Asp $(OtBu)_{2} \cdot HCl$ (40 mg) and DIEA (0.025 mL) were mixed in $CH₂Cl₂$ and added to the reaction mixture. The mixture was stirred overnight before being diluted with CH_2Cl_2 and then washed with 5% aqueous citric acid, followed by a wash with brine and water. It was dried over anhydrous $Na₂SO₄$ and then evaporated. The residue was dissolved in 10% acetone/ CH_2Cl_2 and purified via silica gel column chromatography using the same mobile phase to afford 45 mg, 0.048 mmol, 87% yield of 13¹- β -alanyl-aspartylchlorin e₆ di(*tert*)butyl dimethyl ester. ¹H NMR [(CD₃)₂CO, 400 MHz]: δ 9.74 (s, 1H), 9.70 (s, 1H), 9.10 (s, 1H), 8.19 (dd, J = 11.58, 17.85 Hz, 1H), 8.11 (t, J = 5.66 Hz, 1H), 7.64 (d, J = 8.11 Hz, 1H), 6.37 (d, J = 19.18 Hz, 1H), 6.10 (d, J = 12.94 Hz, 1H), 5.66 (d, J = 19.03 Hz, 1H), 5.38 (d, J = 19.09 Hz, 1H), 4.77 (dt, J = 8.14, 5.74 Hz, 1H), 4.66 (q, J = 7.22 Hz, 1H), 4.52 (dd, J = 10.34, 1.95 Hz, 1H), 4.07 (m, 1H), 3.95 (m, 1H), 3.75 (s, 3H), 3.76 (q, J = 7.3 Hz, 2H), 3.60 (s, 3H), 3.53 (s, 3H), 3.50 (s, 3H), 3.27 (s, 3H), 2.80 (d, J =

 2.57 Hz , 1H), $2.79 \text{ (d, J = 3.06 Hz, 1H)}$, 2.31 (m, 2H) , 1.79 (m, 1H) , 1.71 m $(d, J = 7.24, 3H)$, 1.68 $(t, J = 7.58, 3H)$, 1.43 $(s, 9H)$, 1.42 $(s, 9H)$, -1.61 (s, 1H), -1.91 (s, 1H). The 13^1 β -alanyl-aspartylchlorin ${\bf e}_6$ di($tert)$ butyl dimethyl ester (45 mg, 0.048 mmol) was dissolved in 2 mL of dry $CH₂Cl₂$ in a ice bath under argon. Thioanisole (0.004 mL) and 2 mL of TFA were added, and the reaction mixture was stirred overnight before being evaporated several times with diethyl ether to remove residual TFA. The resulting precipitate was washed several times with diethyl ether to remove more residual thioanisole. The precipitate was dissolved in CH_2Cl_2 and washed three times with H_2O and once with 10% $NaHCO₃$ to remove TFA. The organic layer was dried over anhydrous Na₂SO₄, and the solvent was evaporated to give 38 mg, 0.046 mmol, 97% yield of 13¹-aspartylchlorin e₆ DME $(C_{43}H_{50}N_6O_{10})$. UV—vis (acetone): $\lambda_{\text{max}} (\varepsilon/\text{M}^{-1}\text{cm}^{-1})$ 663 (77125), 607 (3621), 528 (1831), 500 (17200), 399 (237100). ¹H NMR [(CD₃)₂CO, 400 MHz]: δ 9.72 (s, 1H), 9.70 $(s, 1H)$, 9.10 $(s, 1H)$, 8.20 $(dd, J = 11.58, 17.85 Hz, 1H)$, 8.11 $(br t, J =$ 5.66 Hz, 1H), 7.64 (br d, $J = 8.11$ Hz, 1H), 6.32 (d, $J = 19.18$ Hz, 1H), 6.10 (d, J = 12.94 Hz, 1H), 5.63 (d, J = 19.03 Hz, 1H), 5.37 (d, J = 19.09 Hz, 1H), 4.92 (dt, J = 8.14, 5.74 Hz, 1H), 4.66 (q, J = 7.22 Hz, 1H), 4.51 $(dd, J = 10.34, 1.95 Hz, 1H), 4.07 (m, 1H), 3.95 (m, 1H), 3.74 (s, 3H),$ 3.75 (q, J = 7.3 Hz, 2H), 3.60 (s, 3H), 3.51 (s, 3H), 3.50 (s, 3H), 3.25 (s, 3H), 2.96 (d, J = 5.27 Hz, 1H), 2.69 (d, J = 3.06 Hz, 1H), 2.31 (m, 2H), 1.79 (m, 1H), 1.71 (d, $J = 7.24$, 3H), 1.66 (t, $J = 7.58$, 3H), -1.61 (s, 1H), -1.91 (s, 1H). HRMS (MALDI-TOF) m/z 811.381 [M + H]⁺, calcd for $C_{43}H_{51}N_6O_{10}$ 811.367.

13¹ Ethylenediaminylchlorin e_6 DME (12). Methyl pheophorbide a, $(100 \text{ mg}, 0.164 \text{ mmol})$ was dissolved in dry CHCl₃ and stirred under argon for 10 min. Then 0.2 mL of ethylenediamine was added to the solution and the mixture stirred for 24 h. The reaction was monitored by spectrophotometry. The reaction mixture was evaporated, and the residue was dissolved in 2.5% MeOH/CH₂Cl₂ and then chromatographed on a short silica gel column using the same mobile phase to remove byproduct, and then the product was eluted using 50% MeOH/ CH_2Cl_2 to afford 100 mg, 0.150 mmol, 91% yield of 13^1 -ethylenediaminylchlorin e₆ DME $(C_{38}H_{46}N_6O_5)$. ¹H NMR $[(CD_3)_2CO, 400$ MHz]: δ 9.69 (s, 1H), 9.63 (s, 1H), 9.09 (s, 1H), 8.09 (dd, J = 17.78, 11.58 Hz, 1H), 8.07 (br s, 1H), 6.29 (d, J = 18.85 Hz, 1H), 6.02 (d, J = 11.87 Hz, 1H), 5.67 (d, J = 19.08 Hz, 1H), 5.39 (d, J = 19.11 Hz, 1H), 4.66 (q, J = 7.22 Hz, 1H), 4.51 (dd, J = 10.34, 1.95 Hz, 1H), 4.01 (m, 1H), 3.87 (m, 1H), 3.75 (s, 3H), 3.66 (q, J = 7.3 Hz, 2H), 3.61 (s, 3H), 3.50 (s, 3H), 3.45 (s, 3H), 3.20 (s, 3H), 2.71 (m, 1H), 2.31 (m, 2H), 1.95 (br m, 1H), 1.80 (m, 1H), 1.72 (d, $J = 7.24$, 3H), 1.64 (t, $J = 7.58$, 3H), -1.64 (s, 1H), -1.93 (s, 1H). ¹³C NMR $[(CD_3)_2CO, 100 MHz]$ δ 173.1, 173.0, 169.2, 168.3, 167.7, 153.6, 149.1, 144.4, 138.1, 136.0, 135.3, 134.7, 133.9, 130.1, 129.8, 129.3, 120.9, 103.2, 100.7, 98.4, 93.9, 53.1, 51.4, 50.8, 50.2, 48.8, 41.2, 37.2, 30.7, 29.6, 22.6, 19.0, 17.2, 11.3, 11.0, 10.3. HRMS (MALDI-TOF) m/z 667.395 [M + H]⁺, calcd for $C_{38}H_{47}N_6O_5$ 667.361.

13¹ Ethylenediaminyl-lysylchlorin e_6 DME (13). (Boc)Lysine(Boc)OH (55 mg, 0.082 mmol) was dissolved in dry CH_2Cl_2 (10 mL) A mixture of HOBt (15 mg), TBTU (33 mg), and DIEA (0.025 mL) in DMF was added and then stirred for 1 h. 13^1 -Ethylenediaminylchlorin e₆ DME (50 mg, 0.075 mmol) was added to the reaction mixture, which was stirred overnight. The mixture was diluted with CH_2Cl_2 and then washed with 5% aqueous citric acid, followed by a wash with brine and water. It was dried over anhydrous Na₂SO₄ and then evaporated. The residue was dissolved in 2.5% MeOH/CH₂Cl₂ and purified via silica gel column chromatography using the same mobile phase to afford 65 mg, 0.065 mmol, 78% yield of 13^1 ethylenediaminyl(Boc)lysyl(Boc)chlorin e₆ DME (C₅₄H₇₄N₈O₁₀). ¹H NMR $[(CD_3)_2CO, 400 MHz]: \delta$ 9.54 (s, 1H), 9.53 (s, 1H), 9.07 (s, 1H), 8.14 (br s, 1H) 7.94 (dd, J = 17.78, 11.58 Hz, 1H), 7.78 (br s, 1H), 6.18 $(d, J = 18.85 \text{ Hz}, 1\text{H}), 6.16 \text{ (br s, 1H)}, 5.93 \text{ (d, } J = 11.87 \text{ Hz}, 1\text{H}), 5.89 \text{ (br s, }$ 1H), 5.63 (d, J = 19.08 Hz, 1H), 5.39 (d, J = 19.11 Hz, 1H), 4.67 (q, J = 7.22 Hz, 1H), 4.52 (dd, J = 10.34, 1.95 Hz, 1H), 4.17 (m, 1H), 3.85 (m, 1H), 3.75 (s, 3H), 3.66 (m, 3H), 3.61 (s, 3H), 3.52 (br q, J = 7.14 Hz, 2H), 3.41 (s, 3H), 3.39 (s, 3H), 3.11 (s, 3H), 3.00 (m, 2H), 2.71 (m, 1H), 2.32 $(m, 2H)$, 1.95 (br m, 1H), 1.84 $(m, 2H)$, 1.72 $(d, J = 7.24, 3H)$, 1.67 $(m, 1H)$, 1.59 $(t, J = 7.58, 3H)$, 1.41 $(m, 3H)$, 1.37 $(s, 9H)$, 1.34 $(s, 9H)$, -1.66 (s, 1H), -1.94 (s, 1H). The 13^{1} ethylenediaminyl(Boc)lysyl(Boc)chlorin e₆ DME (65 mg, 0.065 mmol) was dissolved in 3 mL of dry CH_2Cl_2 in a ice bath under argon. Thioanisole (0.003 mL) and 2 mL of TFA were added, and the reaction mixture was stirred overnight. The reaction mixture was evaporated several times with diethyl ether to remove TFA. The resulting precipitate was washed several times with diethyl ether to remove thioanisole. Then the precipitate was dissolved in CH_2Cl_2 and washed three times with H_2O and once with 10% NaHCO₃ to remove TFA. The organic layer was dried over anhydrous $Na₂SO₄$, and the solvent was evaporated to give 42 mg, 0.052 mmol, 81% yield of 13¹-ethylenediaminyl-lysylchlorin e₆ DME $(C_{44}H_{58}N_8O_6)$. UV-vis (acetone): λ_{max} $(\varepsilon/M^{-1}\text{cm}^{-1})$ 663 (76420), 607 (1810), 527 (657), 500 (14,560), 399 (242,100). ¹H NMR $[(CD₃)₂CO, 400 MHz]: \delta$ 9.76 (s, 1H), 9.69 (s, 1H), 9.10 (s, 1H), 8.29 (br s, 1H) 8.17 (dd, J = 17.78, 11.58 Hz, 1H), 7.86 (br s, 1H), 6.35 $(d, J = 18.85 \text{ Hz}, 1\text{ H}), 6.07 (d, J = 11.87 \text{ Hz}, 1\text{ H}), 5.64 (d, J = 19.08 \text{ Hz}, 1\text{ H}),$ 5.40 (d, $J = 19.11$ Hz, 1H), 4.66 (q, $J = 7.22$ Hz, 1H), 4.52 (dd, $J = 10.34$, 1.95 Hz, 1H), 3.92 (m, 2H), 3.75 (br m, 5H), 3.74 (s, 3H), 3.60 (s, 3H), 3.53 (s, 3H), 3.49 (s, 3H), 3.26 (s, 3H), 2.96 (br t, 2H), 2.70 (m, 1H), 2.29 $(m, 2H)$, 1.95 (br m, 1H), 1.84 (m, 2H), 1.72 (d, J = 7.24, 3H), 1.68 (t, J = 7.58, 3H), 1.45 (m, 2H), 1.31 (m, 2H) -1.60 (s, 1H), -1.89 (s, 1H). HRMS (MALDI-TOF) m/z 795.492 [M + H]⁺, calcd for C₄₄H₅₉N₈O₆ 795.456.

2. Cell Studies. Human carcinoma HEp2 cells were maintained in a 50:50 mixture of DMEM:AMEM (Invitrogen) supplemented with 5% FBS (Invitrogen), 1% Primocin antibiotic (Invitrogen) in a humidified, 5% $CO₂$ incubator at 37 °C. The cells were subcultured twice weekly to maintain subconfluent stocks. The fourth to fifteenth passage cells were used for all experiments.

2.1. Time-Dependent Cellular Uptake. The HEp2 cells were plated at 7500 cells per well in a Costar 96-well plate and allowed to grow for 48 h. Compound stock solutions were prepared at 32 mM in DMSO and Cremophor (10% of Cremophor in DMSO). Further dilution into the cells of the 96-well plate gave a final concentration of 10 μ M with maximum DMSO concentration of 1% and Cremophor concentration of 0.1%. For the uptake test, the compounds were diluted to 20 μ M (2 \times stock solution) and added to the 96-well to give a final concentration of 10μ M at 0, 1, 2, 4, 8, 12, and 24 h interval. The uptake was terminated by removing the loading medium and washing the wells with 200 μ L of PBS buffer. Cells and compounds were then solubilized using 100 μ L of 0.25% Triton X-100 in PBS buffer. The compound concentration was measured using intrinsic fluorescence as measured with a BMG FLUOstar plate reader equipped with a 355 nm excitation and a 650 nm emission filter. The cells were measured using a CyQuant Cell proliferation assay (Invitrogen) as per manufacturer's instructions, as previously reported. $20,21,24$

2.2. Dark Cytotoxicity. The HEp2 cells were plated as described above for the uptake experiment. The compounds were diluted into media to give 400 μ M solution concentrations. Two-fold serial dilutions were then prepared from 400 to 50 μ M, and the cells were incubated for 18 h. The loading medium was removed, and the cells were fed new medium, followed by 20 μ L of CellTiter blue per 100 μ L of medium and incubated for 4 h. Cell toxicity was measured using Promega's CellTiter Blue Viability Assay Kit as per manufacturer's instructions; untreated cells were considered 100% viable and cells treated with 0.2% saponin as 0% viable, as previously reported.^{20,21,24}

2.3. Phototoxicity. The cells were prepared as described above with compound concentration range from 6.25 to 100 μ M. After loading overnight, the medium was replaced with medium containing 50 mM HEPES pH 7.2. The cells were exposed to a 100 W halogen lamp filtered through a 610 nm long pass filter to provide approximately 1 J cm^{-2} light

dose. The cells were kept cool by filtering the IR radiation through 10 mm of water and placing the culture in an ice-water bath. After exposure to light for 20 min, the plate was incubated in the 37 \degree C, 5% $CO₂$ incubator overnight. Cell viability was then measured as described above using CellTiter blue Viability Assay Kit, as previously reported.20,21,24

2.4. Microscopy. The cells were incubated in a glass bottom 6-well plate (MatTek) and allowed to grow for 48 h. The cells were then exposed to 10 μ M of each compound for 18 h. Organelle tracers were obtained from Invitrogen and used at the following concentrations: LysoSensor Green 50 nM, MitoTracker Green 250 nM, ER Tracker Blue/white 100 nM, and BODIPY FL C5 ceramide 1 mM. After 30 min incubation in the 37 $^{\circ}$ C, 5% CO₂ incubator, both the media and the organelle tracers were removed and washed with PBS buffer for 3 times. Images were acquired using a Leica DMRXA microscope with $40\times$ NA 0.8 dip objective lens and DAPI, GFP, and Texas Red filter cubes (Chroma Technologies).

ASSOCIATED CONTENT

6 Supporting Information. Normalized absorption spectra, energy minimized conformations in water, time-dependent uptake, and subcellular localization microscopy figures. Proton NMR spectra for compounds $2-13$ and other synthetic intermediates, carbon-13 NMR shifts, carbon-13 NMR spectra. This material is available free of charge via the Internet at http://pubs. acs.org.

NO AUTHOR INFORMATION

Corresponding Author

*Phone: 225-578-7442. Fax: 225-578-3458. E-mail: kmsmith@ lsu.edu.

ACKNOWLEDGMENT

This work was supported by the National Institutes of Health, grant numbers CA132861 (K.M.S.) and CA139385 (M.G.H.V.).

ABBREVIATIONS LIST

PS, photosensitizer; PDT, photodynamic therapy; DMF, dimethylformamide; DMSO, dimethylsulfoxide; THF, tetrahydrofuran; DME, dimethyl ester; TME, trimethyl ester; DBU, 1, 8-diazabicyclo[5.4.0]undec-7-ene; DCC, 1,3-dicyclohexylcarbodiimide; TFA, trifluoroactic acid; DIEA, N,N-diisopropylethylamine; TBTU, 2-(1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium tetrafluoroborate; DMAP, 4-dimethylaminopyridine; HOBt, 1-hydroxybenzotriazole; PBS, phosphate buffered saline; FBS, fetal bovine serum; MEM, modified eagle medium; ER, endoplasmic reticulum

REFERENCES

(1) Dougherty, T. J.; Gomer, C. J.; Henderson, B. W.; Jori, G.; Kessel, D.; Korbelik, M.; Moan, J.; Peng, Q. Photodynamic therapy. J. Natl. Cancer Inst. 1998, 90, 889–905.

(2) Hahn, S. M.; Glatstein, E. The emergence of photodynamic therapy as a major modality in cancer treatment. Rev. Contemp. Pharmacother. 1999, 10, 69–74.

(3) Pandey, R. K. Recent advances in photodynamic therapy. J. Porphyrins Phthalocyanines 2000, 4, 368–373.

(4) Brown, S. B.; Brown, E. A.; Walker, I. The present and future role of photodynamic therapy in cancer treatment. Lancet Oncol. 2004, 5, 497–508.

(5) Vicente, M. G. H. Porphyrin-based Sensitizers in the Detection and Treatment of Cancer: Recent Progress. Current Med. Chem., Anti-Cancer Agents 2001, 1, 175–194.

(6) Huang, Z. A review of progress in clinical photodynamic therapy. Technol. Cancer Res. Treat. 2005, 4, 283–293.

(7) Kostenicha, G. A.; Zhuravkina, I. N.; Zhavrid, E. A. Experimental grounds for using chlorin e6 in the photodynamic therapy of malignant tumors. J. Photochem. Photobiol., B 1994, 22, 211–217.

(8) Allison, R. R.; Downie, G. H.; Cuenca, R.; Hu, X.-H.; Sibata, C. H.; Childs, C. J. Photosensitizers in clinical PDT. Photodiagn. Photodyn. Ther. 2004, 1, 27–42.

(9) Kessel, D. Determinants of photosensitization by mono-L-aspartyl chlorin e₆. Photochem. Photobiol. 2008, 49, 447-452.

(10) Sunar, U.; Rohrbach, D.; Rigual, N.; Tracy, E.; Keymel, K.; Cooper, M. T.; Baumann, H.; Henderson, B. H. Monitoring photobleaching and hemodynamic responses to HPPH-mediated photodynamic therapy of head and neck cancer: a case report. Opt. Express 2010, 18, 14969–14978.

(11) (a) Usuda, J.; Ichinose, S.; Ishizumi, T.; Hayashi, H.; Ohtani, K.; Maehara, S.; Ono, S.; Kajiwara, N.; Uchida, O.; Tsutsui, H. Management of multiple primary lung cancer in patients with centrally located early cancer lesions. J. Thorac. Oncol. 2010, 5, 62–68. (b) Usuda, J.; Ichinose, S.; Ishizumi, T.; Hayashi, H.; Ohtani, K.; Maehara, S.; Ono, S.; Honda, H.; Kajiwara, N.; Uchida, O. Outcome of Photodynamic Therapy Using NPe6 for Bronchogenic Carcinomas in Central Airways >1.0 cm in Diameter. Clin. Cancer Res. 2010, 16, 2198–2204.

(12) Wang, S.; Bromley, E.; Xu, L.; Chen, J. C.; Keltner, L. Talaporfin sodium. Expert Opin. Pharmacother. 2010, 11, 133–140.

(13) Bromley, E.; Briggs, B.; Keltner, L.; Wang, S.-S. Characterization of cutaneous photosensitivity in healthy volunteers receiving talaporfin sodium. Photodermatol., Photoimmunol. Photomed. 2011, 27, 85–89.

(14) Akhlynina, T. V.; Jans, D. A.; Rosenkranz, A. A.; Statsyuk, N. V.; Balashova, I. Y.; Toth, G.; Pavo, I.; Rubin, A. B.; Sobolev, A. S. Nuclear targeting of chlorin e_6 enhances its photosensitizing activity. J. Biol. Chem. 1997, 272, 20328–20331.

(15) Soukos, N. S.; Hamblin, M. R.; Hasan, T. The effect of charge on cellular uptake and phototoxicity of polylysine chlorin ${\bf e}_6$ conjugates. Photochem. Photobiol. 1997, 65, 723–729.

(16) Schmidt-Erfurth, U.; Diddens, H.; Birngruber, R.; Hasan, T. Photodynamic targeting of human retinoblastoma cells using covalent low-density lipoprotein conjugates. Br. J. Cancer 1997, 75, 54–61.

(17) Bisland, S. K.; Singh, D.; Gariépy, J. Potentiation of Chlorin e_6 Photodynamic Activity in Vitro with Peptide-Based Intracellular Vehicles. Bioconjugate Chem. 1999, 10, 982–992.

(18) Uzdensky, A. B.; Dergacheva, O. Y.; Zhavoronkova, A. A.; Reshetnikov, A. V.; Ponomarev, G. V. Photodynamic effect of novel chlorin e_6 derivatives on a single nerve cell. Life Sci. 2004, 74, 2185– 2197.

(19) Zheng, X.; Morgan, J.; Pandey, S. K.; Chen, Y.; Tracy, E.; Baumann, H.; Missert, J. R.; Batt, C.; Jackson, J.; Bellnier, D. A.; Henderson, B. W.; Pandey, R. K. Conjugation of 2-(1′-hexyloxyethyl)-2-devinylpyropheophorbide-a (HPPH) to carbohydrates changes its subcellular distribution and enhances photodynamic activity in Vivo. J. Med. Chem. 2009, 52, 4306–4318.

(20) Sibrian-Vazquez, M.; Jensen, T. J.; Fronczek, F. R.; Hammer, R. P.; Vicente, M. G. H. Synthesis and characterization of positively charged porphyrin-peptide conjugates. Bioconjugate Chem. 2005, 16, 852–863.

(21) Sibrian-Vazquez, M.; Jensen, T. J.; Vicente, M. G. H. Influence of the number and distribution of NLS peptides on the photosensitizing activity of multimeric porphyrin-NLS. Org. Biomol. Chem. 2010, 8, 1160–1172.

(22) Hargus, J. A.; Fronczek, F. R.; Vicente, M. G. H.; Smith, K. M. Mono-(L)-aspartylchlorin-e₆. Photochem. Photobiol. 2007, 83, 1006-1015.

(23) Jensen, T. J.; Vicente, M. G. H.; Luguya, R.; Norton, J.; Fronczek, F. R.; Smith, K. M. Effect of overall charge and charge

distribution on cellular uptake, distribution and phototoxicity of cationic porphyrins in HEp2 cells. J. Photochem. Photobiol., B 2010, 100, 100–111.

(24) Josefsen, L. B.; Boyle, R. W. Photodynamic therapy and development of metal-based photosensitizers. Metal-Based Drugs 2008, 276109, 1–24.

(25) Ol'shevskaya, V. A.; Savchenko, A. N.; Zaitsev, A. V.; Kononova, E. G.; Petrovskii, P. V.; Ramonova, A. A., Jr.; Uvarov, V. V. T.; Moisenovich, O. V.; Kalinin, M. M.; Shtil, V. N. A. A. Novel metal complexes of boronated chlorin e_6 for photodynamic therapy. J. Organomet. Chem. 2009, 694, 1632–1637.

(26) Obata, M.; Hirohara, S.; Tanaka, R.; Kinoshita, I.; Ohkubo, K.; Fukuzumi, S.; Tanihara, M.; Yano, S. In vitro heavy-atom effect of palladium(II) and platinum(II) complexes of pyrrolidine-fused chlorin in photodynamic therapy. J. Med. Chem. 2009, 52, 2747– 2753.

(27) Tremblay, T.; Leroy, S.; Freitag, L.; Copin, M. C.; Brun, P. H.; Marquette, C.-H. Endobronchial phototoxicity of WST 09 (Tookad), a new fast-acting photosensitizer for photodynamic therapy: preclinical study in the pig. Photochem. Photobiol. 2003, 78, 124–130.

(28) Trachtenberg, J.; Bogaards, A.; Weersink, R. A.; Haider, M. A.; Evans, A.; McCluskey, S. A.; Scherz, A.; Gertner, M. R.; Yue, C.; Appu, S.; Aprikian, A.; Savard, J.; Wilson, B. C.; Elhilali., M. Vascular targeted photodynamic therapy with palladium-bacteriopheophorbide photosensitizer for recurrent prostate cancer following definitive radiation therapy: assessment of safety and treatment response. J. Urol. 2007, 178, 1974–1979.

(29) Smith, K. M.; Goff, D. A.; Simpson, D. J. Meso substitution of chlorophyll derivatives: direct route for transformation of bacteriopheophorbides d into bacteriopheophorbides c. J. Am. Chem. Soc. 1985, 107, 4946–4954.

(30) Kenner, G. W.; McCombie, S. W.; Smith., K. M. Separation and oxidative degradation of chlorophyll derivatives. J. Chem. Soc., Perkin Trans. 1 1973, 2517–2523.

(31) Wasielewsi, M. R.; Svec, W. A. Synthesis of covalently linked dimeric derivatives of chlorophyll a, chlorophyll b and bacteriochlorophyll a. J. Org. Chem. 1980, 45, 1969–1674.

(32) Han, S.-Y.; Kim, Y.-A. Recent development of peptide coupling reagents in organic synthesis. Tetrahedron 2004, 60, 2447–2467.

(33) Fisher, J. W.; Trinkle, K. L. Iodide dealkylation of benzyl, PMB, PNB, and t-Butyl N-acyl amino acid esters via lithium ion coordination. Tetrahedron Lett. 1994, 35, 2505–2508.

(34) Smith, K. M.; Lewis, M. W. Partial synthesis of chlorophyll a from rhodochlorin. Tetrahedron Lett. 1981, 37, 399–403.

(35) Hudlicky, M. An improved apparatus for the laboratory preparation of diazomethane. J. Org. Chem. 1980, 45, 5377–5378.

(36) Wiehe, A.; Stollberg, H.; Runge, S.; Paul, A.; Senge, M. O.; Roder, B. PDT-related photophysical propertices of conformationally distorted palladium(II) porphyrins. J. Porphyrins Phthalocyanines 2001, 5, 853–860.

(37) Romanova, Z. S.; Deshayes, K.; Piotrowiak, P. Remote intermolecular "heavy-atom effect": spin-orbit coupling across the wall of a hemicarcerand. J. Am. Chem. Soc. 2001, 123, 2444–2445.

(38) Meseguer, B.; Alonso-Díaz, D.; Griebenow, N.; Priv.-Doz., T. H.; Waldmann, H. Solid-phase synthesis and biological evaluation of a teleocidin library—discovery of a selective PKCδ down regulator. Chem.—Eur. J. 2000, 6, 3943–3957.

(39) Shiah, J. -G.; Sun, Y.; Peterson, C. M.; Straight, R. C.; Kopec, J. Antitumor activity of N-(2-hydroxypropyl)methacrylamide copolymer-mesochlorin e_6 and adriamycin conjugates in combination treatments. Clin. Cancer Res. 2000, 6, 1008–1015.

(40) Ol'shevskaya, A. V.; Nikitina, R. G.; Savchenko, A. N.; Malshakova, M. V.; Vinogradov, A. M.; Golovina, G. V.; Belykh, D. V.; Kutchin, A. V.; Kaplan, M. A.; Kalinin, V. N.; Kuzmin, V. A.; Shtil, A. A. Novel boronated chlorin e_6 based photosensitizer: synthesis, binding to albumin and antitumor efficacy. Bioorg. Med. Chem. 2009, 17, 1297–1306.

(41) Kessel, D. Correlation between subcellular localization and photodynamic efficacy. J. Porphyrins Phthalocyanines 2004, 8, 1009– 1014.

(42) Wan, Q.; Liu, L.; Xing, D.; Chen, Q. Bid is required in NPe6- PDT-induced apoptosis. Photochem. Photobiol. 2008, 84, 250–257.

(43) Reiners, J. J., Jr.; Caruso, J. A.; Mathieu, P.; Chelladurai, B.; Yin, X. -M; Kessel, D. Release of cytochrome c and activation of pro-caspase-9 following lysosomal photodamage involves bid cleavage. Cell Death Differ. 2002, 9, 934–944.